

High Efficiency Light Guide Design

Automotive light guide applications demand a combination of exceptional optical clarity, high heat resistance, moldability, high surface hardness and assembly versatility. PLEXIGLAS V825 acrylic resin from Altuglas International meets these demands.

PLEXIGLAS V825 resin offers clarity unsurpassed by any other thermoplastic molding material. Its low extinction coefficient permits efficient light transmission over an extended distance. This efficiency allows the designer to minimize lumen input while maintaining the required illumination thereby reducing cost and energy requirements.

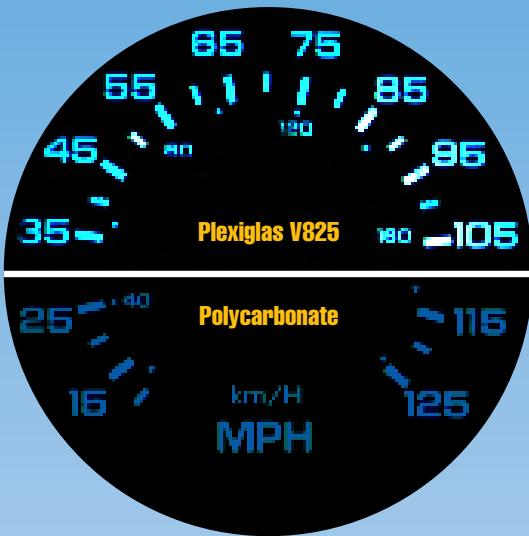
PLEXIGLAS V825 provides long term service at elevated temperatures. With a maximum service temperature of 100°C, it can satisfy the most demanding light guide applications.

PLEXIGLAS V825 is processed at temperatures significantly lower than polycarbonate, thereby improving process economics and extending tool life. Its melt rheology permits the molding of difficult-to-fill, intricate and long path length parts.

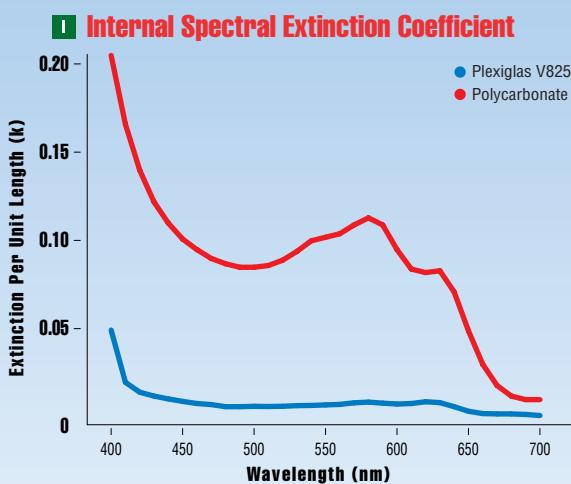
Automotive light guides made from PLEXIGLAS® V825 acrylic resin offer:

- **Increased light transmitting efficiency.**
- **High heat resistance.**
- **Versatility of assembly design.**
- **Reduced system cost.**

The high surface hardness of parts molded from PLEXIGLAS V825 offers the best scratch resistance of any clear thermoplastic resin used in light guide applications.

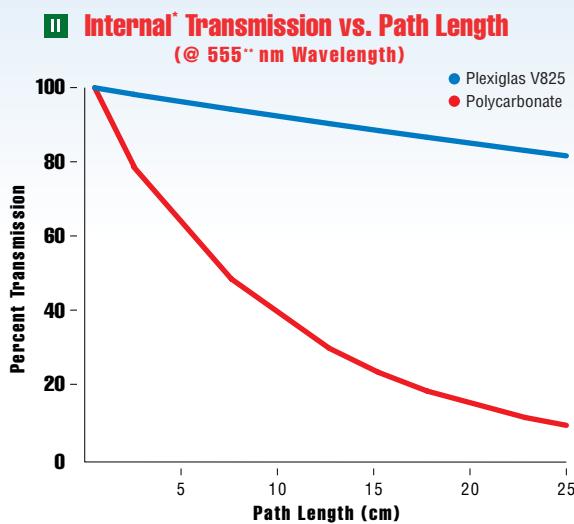

PLEXIGLAS resin provides flexibility in attachment design. A variety of welding (sonic, ultrasonic, spin, and hot plate), cementing, screw fastening, or snap fitting techniques may be used to join like or dissimilar materials.

Its optimum balance of properties, low cost, and processing efficiency make PLEXIGLAS V825 the most cost effective material for light guides.


All Altuglas International resin production facilities carry the QS 9000/ISO 9002 certification. This assures that when PLEXIGLAS resins are specified, you receive the quality your application demands.

Altuglas International offers a staff of engineers ready to assist you with design, material selection and processing recommendations.

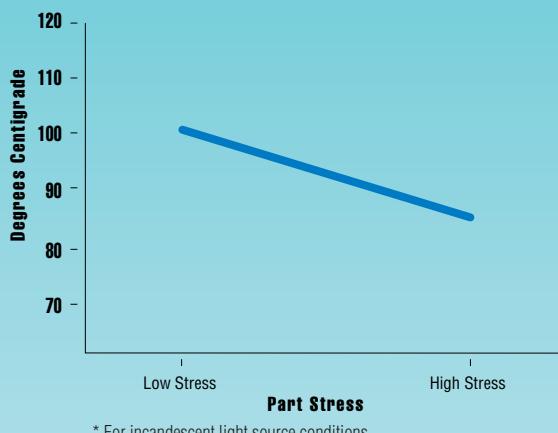
For more information on PLEXIGLAS
acrylic resin, call **1-215-419-7506**


The composite photograph to the left illustrates the visual performance difference in identically illuminated subdials molded from Plexiglas V825, and polycarbonate. The lower light transmission of polycarbonate results in a reduced illumination level relative to the level achieved with Plexiglas V825.

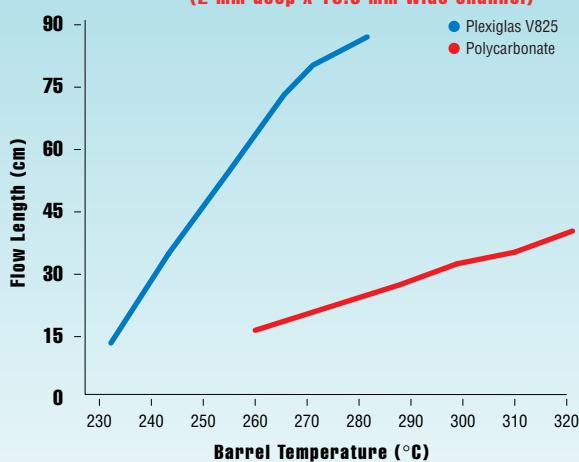
I Internal Spectral Extinction is a useful property for comparing the light transmitting efficiency of polymeric materials. It is independent of length and is a function of the material alone. A high extinction coefficient equates to high absorption or poor light transmission. Internal absorption can be estimated from the extinction coefficient (k) using the following relationship:

$$\text{absorbance}(\text{nm}) = \text{path length} \times (k)(\text{nm})$$

II The low extinction coefficient of PLEXIGLAS V825 allows efficient light transmission throughout the full spectrum of visible light. Over a 16 cm optical path length, PLEXIGLAS V825 resin can internally transmit 4 times more light (@ 555 nm) than polycarbonate. This increased light transmission allows designers to minimize light input requirements thereby simplifying and reducing the cost of a given lighting system.



* Does not include surface reflection losses


** 555 nm is the wavelength of light to which the eye is most sensitive

III Maximum Service Temperature of Plexiglas V825

IV Spiral Flow at Maximum Injection Pressure (2 mm deep x 15.9 mm wide channel)

◆ Welding Compatibility*

Material	Plexiglas V825	PC
Plexiglas V825	Excellent	Fair
PC	Fair	Excellent
ABS	Excellent	Poor
SAN	Excellent	Poor
PS	Good	Poor

* Compatibility refers to ultrasonic, sonic, and spin welding techniques. Generally, all combinations may be hot plate welded.

◆ Mechanical Assembly of Plexiglas Resin

Type	Recommended Guideline
Screw Assembly	
Preferred Screw Type	Thread Cutting
Boss Outside Diameter	≥ 2 x Major Diameter of Screw
Pilot Hole Diameter	0.9 x Major Diameter of Screw
Snap Fit Assembly	
Permissible Deformation	2% in Flexure

III The maximum service temperature of light guides molded from PLEXIGLAS resin is a function of part stress. As stress increases, the maximum service temperature of the part decreases. Optimal service temperature is obtained through good design practice and low stress molding conditions.

IV PLEXIGLAS V825 resin has good flow properties over a wide range of melt temperatures. The filling of complex molds is possible by adjusting melt temperature, fill speed, and injection pressure.

◆ The weldability of polymeric materials is primarily dependent on molecular structure and melt temperature. Amorphous thermoplastics such as PLEXIGLAS acrylic resin are well suited to various welding techniques. PLEXIGLAS V825 has excellent compatibility with a variety of resins commonly used in automotive applications.

Tables ◆ and ◆ are provided as general guidelines for use in light guide design. For more specific information or design assistance, contact an Altuglas International representative.

◆ Design Information

Property	Plexiglas V825	PC
Refractive Index, N_D	1.49	1.59
Critical Angle for Internal Reflection	42.2	39.2
Surface Hardness (Rockwell M-Scale)	97	75

Headquarters Americas

Altuglas International

Arkema Inc.

2000 Market Street

Philadelphia, PA 19103

T 215.419.7000

F 215.419.5512

Arkema Canada Inc.

700 Third Line

Oakville, ON

L6J 5A3

T 905.847.4789

800.567.5726

F 905.825.9296

mauricio.fernandes@arkema.com

Detroit Office

Altuglas International

Arkema Inc.

1786 Hidden Valley Drive

Milford, MI 48380

T 248.887.2245

F 248.887.0452

Arkema Quimica Ltda.

Av. Ibirapuera 2033

Sao Paulo, SP

04029-901

T +5511 2148 8562

F +5511 5051 4780

carlos-de.lion-neto@arkema.com

plexiglas.brasil@arkema.com

Arkema Mexico SA de CV

Via Gustavo Baz 2160 Edif 3

54060 Tlalnepantla, Mexico

T +55 5002 7115

F +55 5002 7137

agustin.xoconostle@arkema.com

Monterrey:

Hidalgo 444-A, Col. Centro

66050 Escobedo, N.L.

T +81 8058 1903

F +81 1367 0968

teresa.lopez@arkema.com

T +55 5002 7130

Altuglas® and Plexiglas® are registered trademarks belonging to Arkema.

Plexiglas resins are combustible thermoplastics. Observe fire precautions appropriate for comparable forms of wood and paper. For building uses, check fire code approvals. Impact resistance is a factor of thickness. Avoid exposure to heat or aromatic solvents.

Clean with soap and water. Avoid abrasives.

The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof.

Since the conditions and methods of use of the product and of the information referred to herein are beyond our control, Arkema expressly disclaims any and all liability as to any results obtained or arising from any use of the product or reliance on such information; NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY, OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED, IS MADE CONCERNING THE GOODS DESCRIBED OR THE INFORMATION PROVIDED HEREIN. The information provided herein relates only to the specific product designated and may not be applicable when such product is used in combination with other materials or in any process. The user should thoroughly test any application before commercialization. Nothing contained herein should be construed as an inducement to infringe any patent and the user is advised to take appropriate steps to be sure that any proposed use of the product will not result in patent infringement.

Plexiglas acrylic plastic is a combustible thermoplastic. Observe fire precautions appropriate for comparable forms of wood and paper. For building uses, check code approvals. Impact resistance is a factor of thickness. Avoid exposure to heat or aromatic solvents. Clean with soap and water. Avoid abrasives.

ALTUGLAS
INTERNATIONAL
ARKEMA GROUP

